

Mixing of Alternative Gases

Corey Ratza

Chris Barrett

- Review of DILO's Green Gas Handling Roadmap
- Alternative Gas Theory review
- Storage (C4, C5)
- Mixing on-site
- Preparation and Creating a Mixture
- Measuring a mixture
- Alternative Gas Cylinder information
- Gas Mixture End of Life
- Closing Remarks

- Review the characteristics of Novec mediums
- Identify the ratios for mixtures of alternative gases
- Understanding the importance of liquid vs. vapor storage of C4/C5 mixtures
- Prevention methods of cross contamination

DILO's Green Gas Handling Roadmap

$\mathrm{SF}_{\!_{6}}\,\mathrm{FREE}\,\mathrm{GAS}\,\mathrm{HANDLING}$

Environmentally Friendly Solutions

Several switchpair manufactures new offer the first rear-officient Gas Insulated Equipment designed for use with alternative gases. Alternative gases have a significantly reduced Global Warming Potential companed to SF, gas. DLD has invested years of research and development into the first complete product lice origineered for the handling of alternative gases.

Product Line C4 2M^{IM} Novic^{IM} 4710 (CF), CRN

As a specialist and world loader for gas handling solutions, OR.D also works with manufacturers, public, and private organizations that require sepport for alternative gas handling applications. OR.D can engineer and supply custom products for special applications, including development, production, installation, and commissioning.

DILO'S ROADMAP TO GREEN GAS HANDLING

7 TH ANNUAL SF GAS MANAGEMENT SEMINAR 2022

Mixture Procurement: Past & Present

- End-users previously only allowed to purchase from 3M
 - A distribution agreement has been struck between EPA and DILO for the US Market in 2022
- Cylinders of Novec used to have to be sent to the DILO factory in Germany to be mixed and sent back to customer in either gaseous or liquid storage containers
- DILO Florida will have all of the equipment to perform mixing in the US by Q1 2023
 - C4/C5 gas mixing plant & associated handling/testing equipment
 - Novec-specific vessels
 - Supporting carrier gases
 - Factory-trained technicians
- Stock of filled cylinders based on OEM mixtures will be available

7 TH ANNUAL SF₆ GAS MANAGEMENT SEMINAR 2022

DILO's History With Insulating Gases

DILO has over 70 years of experience, providing high-pressure fitting solutions for industrial and specialty gases and liquid applications. And, over 50 years of knowledge, experience and expertise in engineering, production and service of gas handling, field analysis, leak detection and gas management solutions for gas insulated equipment.

DILO is represented by over 80 agents globally. Including, 30 service locations worldwide and 3 main Service Centers of Excellence located in, Babenhausen Germany, three service centers and one production facility in the United States of America (Odessa FL, Casa Grande AZ & Portland OR) and a location in Singapore.

Visit <u>dilo.com</u> or scan the QR code for more information on DILO solutions for all your Gas Insulated Equipment fitting and gas handling needs.

- New alternatives are certainly offering excellent benefits and the future will continue to allow the evolvement of the alternatives.
- We as an industry will continue make progress with equipment, resources, knowledge and training for alternatives
- As the alternatives improve and decisions to which alternatives will be used, considering and supporting reduction of global emissions can be realized at the local level by utilizing recycled and/or reconditioned SF₆ gas
- SF₆ gas continues to be a proven medium for GIE insulation and arc quenching at all voltage and current levels
- SF₆ gas handling techniques, processes and training has provided a great level of reduction in emissions during the gas handling process

DILO SF₆ Certified Gas Process

Intake & Analysis of Used SF₆

- - Presence of SO₂* •

Low Purity

High H₂O*

Account for weight of SF₆ analyzed and to be reconditioned

* CIGRE ; IEEE; ANSI; IEC; ASTM

Perform SF₆ reconditioning

Analysis of Reconditioned SF₆

Confirm analysis of reconditioned SF, meets/exceeds standards for re-use*

Report	5-2975	Service #	0		Hater	1/20/2020	Contraction of the	
AssetTag Number	Cytester Barial Number	Cylinder EarthCation Earth	Purity (Vol %)	Moisture	Decomp (SO/SOF)	Tare Weight	Gross Weight	SF, Vieight
	SCAR2500Y	1802018+	10.04	140 19944	PPSN	1,454.01,85	2,554.0 LBS	1,100-0.84
	6169-33	8/2014+	100.015	1400 0450	PPMM .	1,388.0185	2,488.01.88	1,200-0-04
	4090-26	420114	100.0%	10000	PP8hr	1,452.0 L05	2,552.0 LBS	5,100-0-816
	4057-0	9/20144	100.0%	-40 DP54e	DOMA	5,430 G LBS	2,530.0 LBS	1100-0-81
	4057-17	90018+	100.2%	-40 19 9.44	PP8A.	1.407.01.85	2.507.01.85	1100-0-84

Account for weight of SF₆ analyzed and reconditioned

Fill into clean (non-contaminated) SF₆ storage containers

Alternative Gas Review

1		Sulfur-hexafluoride	Clean-Air	Carbon Dioxide and Oxygen	C4-Fluoronitrile	C5-Fluroketone
	Chemical Formula	SF ₆	80% N ₂ + 20% O ₂	70% CO ₂ + 30% O ₂	(CF ₃) ₂ CFCN	(CF ₃) ₂ CFC(O)CF ₃
Gas	CO2 _e (<u>GWP</u>)	23,500	0	<1	2,210	1
Base Gas	Boiling Point	-64°C	<-183°C	-50C	-5°C	+27°C
	Dielectric Strength	1.00	0.43	0.77	2.20	1.70
are	Background (gases)	Pure or with N ₂ or CF ₄	80% N ₂ + 20% O ₂	70% CO ₂ + 30% O ₂	~90% CO ₂	~90% O ₂ With N ₂ or CO ₂
Mixture	CO2 _e (<u>GWP</u>)	23,500	0	<1	~380	<1
Gas	Lowest Operating Temperature	-30°C *	-50°C	-50C	-30°C	0°C to +5°C -20°C possible
nternal Arc Reaction	Decomposition Products	HF, S _x F ₉ , SOF _x , F ₂ , SO _x , CF ₄	If applicable: O ₃ , NO _x	CO, HF, O ₃	CO, HF, C _n F _{2n+2} , other Fluorinated Compounds	CO, HF, COF ₂ , C _x F _w other Fluorinated Compounds
Intern Read	Toxicity of Decomposition Products	Slightly toxic (Hodge-Sterner)	Typically None	Relatively harmless (Hodge-Sterner)	Practically non-tox	dic (Hodge-Sterner)

Alternative Gas Review

	Properties of the gas mixtures									
Common trade names		g³ (GE)	AirPlus (ABB)	CleanAir (Siemens)						
Gas mixtures in use	Pure SF ₆	C4: < 6.3 % with $\rm CO_2$	C5: < 15 % in Synthetic Air	CA: $\sim 20~\%~O_{_2}$ in $\rm N_{_2}$						
	${\rm SF_6}$ with ${\rm N_2}$ or ${\rm CF_4}$	C4: < 6.3 % with $O_{\rm z}/CO_{\rm z}$	C5: < 15 % in O ₂ /CO ₂	-						
Minimum operating temperature	Pure SF ₆ : < –30 °C	Depending or	n the exact mixture:	<-50°C						
	$\rm SF_6$ with $\rm N_2/CF_4:$ $<-50\ ^\circ C$	-30 °	C to −5°C	-						
Global warming potential	≤ 22800	≤ 500	< 1	0						

Alternative Gas Review

Market overview

SF₆-free distribution switchgear 12 - 40.5 kV (examples):

	ABB	SIEMENS	Schneider	nuventura	DRIESCHER • WEGBERG	O efacec	F.T.N	G&W	S ₈ C		TOSHIBA
Insulation	C5-FK mix	Dry air	Synth. Air	Dry air	C4-FN mix	Solid + air	Solid + air	Solid	C4-FN mix + solid	Dry air	Solid

SF₆-free transmission switchgear 72.5 - 170 kV (examples):

	LS 'IS	38	нітасні	нітасні	A HYUNDAI	ILĴIN	SIEMENS CHORGY		PINGGAO GROUP	MEIDEN	TOSHIBA
Design	GIS	GIS / LT	GIS	Live tank	GIS	GIS	GIS / LT	Dead tank	GIS	Dead tank	C-GIS
Insulation	C4-FN mix	C4-FN mix	C4-FN mix	Dry air	C4-FN mix O ₂ -free	Dry air	Techn. air	Techn. air	CO ₂	Dry air	Solid
Switching	C4-FN mix	C4-FN mix	C4-FN mix	O ₂ / CO ₂	C4-FN mix O ₂ -free	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum

Storage (C4, C5)

Gaseous storage

Advantages	Disadvantages
Certified gas	Relatively small quantities can be stored
Small gas compartments can be filled	Partial liquefaction possible when cooling down
No service cart necessary (only gas refilling device)	Mixing ratio cannot be changed on site

Partially liquefied storage

Advantages	Disadvantages
Large storage quantity	No direct withdrawal possible without service cart
Exact predefined gas mixture	Heating by service cart is time-consuming
Independent of outside temperature	Mixing ratio cannot be changed on site

7 TH ANNUAL SF GAS MANAGEMENT SEMINAR 2022

Storage (C4, C5)

Comparison of storage capacity

Comparison of the maximum storage capacities of liquefied and gaseous mixtures of Alternatives Gases.

Comparison of storage capacity	6 % C4 and 94 % CO ₂	6 % C5 and 94 % CO ₂	Synthetic Air (20 % 0 ₂ in 80 % N ₂)
	9	aseous	
50 l cylinder, T = 20 °C	5.1 kg	1.6 kg	11.8 kg
600 I tank/cylinder bundle, T = 20 °C	61.3 kg	19.1 kg	141.6 kg
Filling pressure, T = 20 °C	46.9 bar	13.5 bar	200 bar
	lic	juefied	
50 I cylinder, PH = 300 bar	28.3 kg	30.6 kg	Not applicable
600 I cylinder, PH = 70 bar	79.3 kg	85.6 kg	Not applicable
	2	1 - 1 - 1 - 1 - 1 - 1 - 1 - 7	

PH = Test pressure of the pressure tank. For synthetic air, a filling with 200 bar at 20 °C has been used as a calculation basis. Liquefaction of the mixture at this temperature cannot occur. For calculation of the liquefaction point, the ideal gas equation was used.

C4/C5 Off-Site Mixing

Gaseous

C4/C5 Off-Site Mixing

C4/C5 Mixing On-Site

Preparation and Creating a Mixture

- Identify cylinder threads (examples C4/C5 vs SF6)
- Nitrogen Purging of cylinders prior to filling

Creating a Mixture

- Flow Diagram (in short form)
- Setting parameters on the mixing plant

Measuring a Mixture

- Using a Multi-Analyzer
- Lab Analysis
- Review of Sensors & Main Contaminants

	Mol% 3M™ Novec™ 4710	Mol% 3M™ Novec™ 5110	Moisture	Mol% oxygen (0 ₂)	Mol% carbon dioxide (CO ₂)	Concentration carbon monoxide (CO)
Measuring principle/sensor	Non-dispersive infrared sensor (NDIR)	Non-dispersive infrared sensor (NDIR)	Electronic dew point measurement (capacitive)	Electrochemical reaction	Non-dispersive infrared sensor (NDIR)	Electrochemical reaction
Measuring range	0 – 10 mol%	0 – 15 mol%	-60 °C to +20 °C	0 – 25 mol%	0 — 100 mol%	0 – 500 ppm
Measuring accuracy	≤ ±0.1 mol% (at < 7%) ≤ ±0.2 mol% (at ≥7%)	$\leq \pm 0.1 \text{ mol}\% \text{ (at } < 7\%)$ $\leq \pm 0.2 \text{ mol}\% \text{ (at } \geq 7\%)$	$\leq \pm 2^{\circ}$ C (at > -40°C) $\leq \pm 3^{\circ}$ C (at < -40°C)	≤ ±0.2% mol%	≤ ±2 mol%	±2% of measuring range

General Labeling

- Material # Identification \rightarrow
 - Ratio of mixed gases
 - Weight of gas mixture
 - Container Size
 - Valve type Contaminants

DCGas = DILO Certified Gas C5-5,90/5,60/CO2 = Mixture C5 consisting of: 5.9 % Novec 5110, 5.6 % O2 und 88.5 % CO2 g = State of aggregation of the gas: here gaseous 600 I = The container: Here 600 I tank +5°C = Ambient temperature mF = with pressure vessel

Benefits for operators

- Reduces risk of cross contamination
- Simplifies inventory management

QR Labeling

- Reconditioning is possible with C4 & C5
- Separation Plant in development
- Cons to incineration:
 - Permanent loss of product
 - Increased cost of GIE ownership
 - Extended lead times due to vendor reliance

- Do I have to purchase Novec directly for a vendor to create a mixture?
- Are alternative gases able to be reconditioned?
- Can storage be liquid AND gaseous?
- What are ways I can simplify my documentation processes?

6150000

Closing Remarks & Resources

- DILO. WhitePapers
- DILO. Training & Certification

WELCOME TO THE DILO BLOG

Clob.to.eerrine

< 100

ALTERNATIVES TO SF6 GAS: WHAT ARE THE AVAILABLE OPTIONS?

Alternatives to SF_8 gas are gaining traction in the Electrical Industry. Why are SF_8 alternatives becoming popular? What available options are there to replace SF_8 gas? Can users keep the same switchgear when looking for a replacement? Read on to learn all this and more.

DILO Media

- Check out our Blog!
- Pro-tip videos
- DILO Americas YouTube Channel

7TH ANNUAL SF GAS MANAGEMENT SEMINAR 2022 Thank you! Questions?? SF₆ GAS **INDUSTRIAL** HIGH PRESSURE GASES **GAS EQUIPMENT** PRODUCTS