

TESLA – Or How We Avoid Using SF₆ in Our Circuit Breaker

Lukas Graber, Ph.D.

Associate Professor, Georgia Tech

Content

- The limits of vacuum, gas, and liquid media
- Supercritical fluid mixtures
- Challenges with SCF breaker design
- Target specifications of TESLA, conceptual design, and timeline
- Bonus: EDISON, our DC circuit breaker

7TH ANNUAL SF, GAS MANAGEMENT SEMINAR

Limits of Vacuum, Gas, and Liquid Media

Low cost

- Choice of media:
 - Vacuum
 - Bad heat transfer, limits power/voltage/current ratings
 - Gas
 - Limited dielectric strength
 - **Dissociation & decomposition**
 - Liquid
 - High viscosity, incompressible
 - **Dissociation & decomposition**
 - Solid
 - Does not support motion
 - Non self-healing/restoring

Supercritical Fluids

J. Wei et al. (c. 2019)

T. Kiyan *et al.*, "Negative DC pre-breakdown phenomena and breakdown-voltage characteristics of pressurized carbon dioxide up to supercritical conditions," *IEEE transactions on plasma science*, vol. 35, no. 3, pp. 656-662, 2007.

Dielectric Anomaly with Supercritical Fluids

- Dielectric strength increases with density
- L strength increases uschen's law (uniform field) Reason: Drop in mean free path leads to drop in rabability of inelastic collisions (ionization, rachment)
- Density fluctuation reaches maximum at critical point due to clustering
 - Clustering leads to long mean free paths of electrons between collisions
 - Dielectric strength drops around critical point
- Further increasing temperature/pressure breaks up the clusters
 - Dielectric strength reaches new heights

TH ANNUAL SF, GAS

MANAGEMENT SEMINA

Supercritical Fluid Mixtures

- Base substance: CO₂
 - Good balance of properties
- Additives for <u>binary</u> mixtures:
 - O₂ for better arc performance, reduction of carbon deposits, longer life of fluid
 - H₂ for higher thermal conductivity
 - C₂H₆ for lower critical temperature
 - CF₃I for higher dielectric strength (we measured 350 kV/mm in uniform field)

J. Wei , A. Cruz, F. Haque, C. Park, L. Graber, "Investigation of the dielectric strength of supercritical carbon dioxide–trifluoroiodomethane fluid mixtures," *Phys. of Fluids*, 32, 103309 (2020)

Dielectric Strength of CO₂-CF₃I (sc)

- Intrinsic dielectric strength
 - Uniform field
 - Small gap
 - 100% self-restoring
- This particular mixture is <u>not</u> meant for arc quenching
 - Most suitable for non-arcing high power density applications, incl. high energy physics
- 25-30 kV in 100 μm gap uniform field
 - 250-300 kV/mm, higher than many solids and liquids

TH ANNUAL SF. GAS

MANAGEMENT SEMINA

Dielectric Strength of CO₂-C₂H₆ (sc)

- Same experimental conditions
- Azeotropic mixture of 75% CO₂ + $25\% C_2 H_6$ (by mass) has the lowest critical temperature (~RT)
 - Less heating effort
- Intrinsic strength lower than pure CO_2
- Unwanted polymerization can occur (deterioration)

TH ANNUAL SF, GAS

MANAGEMENT SEMINAR

350

400

J. Wei et al., Phys. Fluids 32, 053305 (2020)

Dissociation in the Arc

L. Graber, C. Park *et al.*, TESLA proposal (2021)

 Complex molecules (here: SF₆) tend to dissociate into many different species that do not recombine to the original substance

TH ANNUAL SF, GAS

MANAGEMENT SEMINA

- Result: Reduced life expectancy of the medium, potentially more deposits and wear on other parts of the breaker
- Pure CO₂ can result in carbon deposits since some of the released oxygen reacts with metal vapor. Additional O₂ can minimize this effect.

TESLA¹ Team

¹Tough & Ecological Supercritical Line Breaker for AC

Lukas Graber Principal investigator

Santiago Grijalva Grid applications and value proposition

Jonathan Goldman Tech-to-market, startup company

Lauren Garten MOV studies

Chanyeop Park

Design considerations, decomposition products, and synthetic testing

Project management, electrical-thermalmechanical design

Zhiyang Jin

Collaboration:

Sponsor:

TESLA Project Objective

- Smaller footprint: > 30% volume reduction
- Less maintenance effort and longer service time
- Reduced carbon footprint
- Unique technologies
 - New switching medium: Supercritical CO₂-based mixtures
 - Supercritical CO₂ has higher dielectric strength and longer life expectancy than SF₆
 - More efficient arc quenching mechanism
 - Flexibility due to detached hydraulic power unit
 - Guaranteed leak-free design (all-metal sealing)

¹A reduced-scale version might develop in a version that is suitable for distribution systems.

TH ANNUAL SF, GAS

MANAGEMENT SEMINA

L. Graber, C. Park et al., TESLA proposal (2021)

TESLA: Tough and Ecological Supercritical Line Breaker for AC

TH ANNUAL SF GAS

(partially cross-section view)

Challenges

- High pressure fluid (8-12 MPa steady-state)
 - Safety aspects
 - Pressure rise during arcing phase (likely higher than SF₆)
- Fluid with low viscosity/high diffusivity
 - Seal around flanges, fittings, actuators etc.
- Compressible limit of fluid
 - Design of nozzle and piston to limit solidification
 - Absorption of shockwaves ("hammer arrestor")
 - CFD code for partially-compressible, low viscosity, highly turbulent flow (plus ionization, electrohydrodynamics EHD, magnetohydrodynamics MHD)
- Build substation-grade apparatus with students on campus

TESLA Project Timeline

- Funded by ARPA-E through their SF6-FREE program
 - June 2022 May 2025
- Design, build, and test/demonstration of reduced-scale version at UWM (by 2024)
 - LC synthetic test circuit to initiate current waveform and superimpose TRV
 - BIL high voltage testing
 - Heat run at RMS current (in short circuit)
- Design, build, and test of full-scale version at KEMA-PA (by 2025)
 - Same as above, plus:
 - Power testing at full 63 kA symmetrical RMS fault current
- Includes tech-to-market strategy
 - Currently in early phase of customer discovery interviews.
 - We are looking forward to discuss our commercialization efforts with utilities, switchgear manufacturers, and suppliers.

Bonus: EDISON (Efficient DC Interrupter with Surge Protection)

Specifications	Units	Value
Rated Voltage (DC)	kV	12
Peak Interruption Voltage	kV	24
Rated Continuous Current	kA	2
Peak Fault Current	kA	8
Minimum Source Inductance	μН	300
Maximum Energy Absorbed	kJ	30
Fault Clearing Time	μs	450
Trip Slew Rate	A/µs	40
	kA	3
FMS Volume	L	270
Power Density	MW/m ³	60
Efficiency	•	99.97%
Power Density	MW/m ³	60
Arc Energy in an incident*	cal/cm ²	0.01
	J/cm ²	0.04

Calculation is based on an 8-kA fault current in 500 µs

A. Cruz et al., EDISON flyer (2022)

FLORIDA STATE UNIVERSITY

Georgia

Tech

7 TH ANNUAL SF GAS MANAGEMENT SEMINAR 2022

7 TH ANNUAL SF₆ GAS MANAGEMENT SEMINAR ²⁰²²

Thank you

- Special thanks to my collaborators, students, staff in the mechanical machine shop.
- Sponsors:
 - ARPA-E: TESLA and EDISON projects
 - NSF: Fundamental research on supercritical fluid mixtures