

DILO Certified Gas: Reconditioning, SF₆ Gas Inventory, & Cylinder Management

Danielle White

Robert Cardenas

Learning Outcomes

- List the benefits of using reconditioned SF₆ gas
- Describe the specifications of reconditioned gas for use and supply with GIE
- Recognize the difference between reconditioned SF₆ gas and following the Three R's Protocol
- Perform accounting of gas inventory and cylinder management

SF₆ History & General Overview

- Discovered in 1901 by French chemists Henri Moissan and Paul Labeau. The special properties of Sulfur Hexafluoride have contributed to its use in several applications, mainly high voltage equipment: circuit breakers, particle accelerators, etc.
- SF6 is manufactured by method of electrolysis
- In 1937 it was found that SF6 posses a much higher dielectric strength than air. This determination led to its primary use in the electrical industry ever since. SF6 soon became a preferred insulating medium over earlier insulators such as air, oil, and vacuum.
- Roughly 10,000 tons of SF6 is produced each year. 80% of this volume is used directly by the Electrical Industry.

Market Drivers & Trends

"The increasing export is expected to augment product prices over the forecast period."

Environmental Impact (Part 1)

SF6, regardless of quality or state, contributes to the following negative impacts once emitted into the atmosphere:

Overview of U.S. Greenhouse Gas Emissions in 2020

U.S. Environmental Protection Agency (2022). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020

Environmental Impact (Part 2)

The greenhouse effect is the planet's normal process of heating the environment to make life suitable for living things via natural greenhouse gases

- Artificial greenhouse gases which are industrially manufactured accelerate the greenhouse effect – especially fluorinated gases
- Satellites in space measure and trace the origins of greenhouse gases
- Strengthening of the greenhouse effect increases global warming. Global warming is associated with stronger storms, rising sea levels, increased droughts, etc.

Without the greenhouse effect, the Earth's surface temperature would be cooler by 60 degrees F causing many life forms to freeze <u>Greenhouse Effect | National</u> <u>Geographic Society</u>

Requirements for Reuse

	<u></u>	
	IEC 60376 Specification for new SF6 gas	IEC 60376 Specification for used SF6 gas
SF6	> 98.5 Vol% For gas mixtures: > 99.7 Vol%	> 97 Vol% For gas mixtures: ±5% from the normal value
Air/CF4	Air: < 10,000 μl/l (i.e 1 Vol%) for pure SF6 gas For gas mixtures: < 2,000 μl/l (i.e. 0.2 Vol%) CF4: < 4,000 μl/l (i.e. 0.4 Vol %) for pure SF6 gas For gas mixtures: < 800 μl/l (i.e. 0.08 Vol%)	< 30,000 µl/l (i.e 3% Vol.) For gas mixtures: SF6/N2 mixtures: < 30,000 µl/l (air and/or CF4) SF6/N2 mixtures: < 30,000 µl/l (air and/or N4)
Moisture (dew point)	< 200 µl/l (i.e. 200 ppmv: -36°C frost point @ atm)	< 200 µl/l (i.e. 200 ppmv: -36°C frost point @ atm)
Oil	< 10 mg/kg (i.e. 10 ppm _w)	< 10 mg/kg (i.e. 10 ppm _w)
HF, SO ₂	< 7 µl/l (l.e. 7 ppmv) total	< 50 µl/l total (i.e. 50ppmw) or 12 µl/l (i.e. 12ppmv) For (SO2+SOF2) or 25 µl/l (i.e. 25 ppmv) HF

Virgin vs. Reconditioned SF₆ (part 1)

Virgin vs. Reconditioned SF₆ (part 2)

Contaminant	Threshold	Location
Air (other vapors)	<97%	Purification @ supplier site
Moisture	>200 ppm	On-site filtration possible
By-product (SO ₂)	>12 ppm	On-site filtration possible

The process for reconditioning SF6 starts and ends with analysis and documentation. Analysis is key for understanding contaminant levels and verifying reconditioned gas.

DILO Certified Gas

<u>Verified SF₆ product that stands behind our</u> <u>emission-free philosophy...</u>

- Consulting services available
- Incoming & Outgoing reports provided
- Bi-coastal centers
- Loaner cylinders available
- Third party analysis with certification available upon request

Maximum Acceptable Purity Levels:

	IEC 60480*	DILO Certified SF ₆ Gas
0 ₂ and/or CF ₄	3%	<0.9%
H ₂ 0	25 ppmW/200 ppmV (-36°C dew point)	<99.5 ppmV (-41.5°C dew point)
Mineral Oil	10 ppmW	<1 ppmW
Reactive Gases	50μ/l total or 12μ/l for (So2 + SOF2) or 25 μ/l HF	0 ppmV

*Values based on IEEE C37.122.3 and IEC 60480 standards.

Benefits of SF₆ Reuse

EPA United States Environmental Protection Agency

- Reduction in our carbon footprint
- Cost savings
- Reduction in lead times
- Increased accuracy with inventory management & reporting
- Increased grid reliability

The production of 100 lbs. of virgin SF₆ produces a 3-8 lbs. emission value

Reconditioning 100 lbs. of SF6 produces an emission value of < 0.5 pounds*

- Unable to verify electrical grade SF6 (**99.999% purity**) in the field due to limitations with portable testing devices
- **ASTM 2472 D standard** (currently in review) calls for the following:
 - Moisture <8 ppmv
 - Purity > 99%
 - HF < 0.3 ppmw
- The manufacturing process for SF6 generates impurities which are removed via cryogenic and filtration processes, similar to gas that is contaminated during the life cycle in GIE. Both gas types can be refined without compromising insulating properties.
- Consider markets where quality is critical i.e. the medical industry
- Current events and challenges with sourcing virgin SF6

Considerations

Gas Reconditioning vs the 3 Rs

Learning Outcomes

- Testing
 - Importance of testing prior to handling
 - What are we looking for
- 3RS:
 - Recovery
 - Accountability
 - Key tools and Resources
 - Recycle
 - Types of Filtration
 - Filtration on site
 - Reuse
- Process of Reconditioning

Importance of Testing & What are we looking for

- Perform condition of the SF6 in the GIE
- Moisture Content
- Purity
- SO2 (by-products)

	IEC 60376 specification for new SF6 gas	IEC 60480 specification for used SF6 gas	IEC 62271-4 SF6 reuse specification
Air / CF ₄	Max. 1 vol%	< 3 vol%	< 30 vol-% air < 5 vol-% CF ₄
Moisture (Dew point)	-36 °C* at p _a 1 bar < 25 ppm (mass)	-23 °C* at p _a 1 bar (medium voltage) -36 °C* at p _a 1 bar (high voltage)	< 1,000 ppm (mass) approx. +4.5 °C at p _a 1 bar
Oil	< 10 ppm (mass)	< 10 ppm (mass)	< 1,000 ppm (mass)
HF, SO2	< 1 ppm _v	< 12 ppm _v SO ₂ < 50 ppm _v total	> 12 ppm _v SO ₂ > 50 ppm _v total

IEC specifications (standards) for sulphur hexafluoride

Contaminant	In-service	Re-use
Non-reactive gases (air / N ₂)	Up to 3%	Up to 3%
Reactive gases (SO ₂ , SOF ₂)	500 PPM ₄	12 PPM,
Moisture - GCB only	200 PPM,	200 PPM

The 3-Rs

- Recovery of gas: Capturing from a GIE through an emission free process that includes filtration of contaminants
- Recycling of gas through filtration: Process the gas through a prefilter system that removes contaminants
 - Activated charcoal: To adsorb oil in the gas

- Aluminum Oxide: Separates moisture and by products from the vapor by acting as an absorbent attracting those compounds

- Molecular Sieve: Uses dehydration to trap water molecules within them to achieve separation from SF6

- Particle Filters: Designed to trap solid particles that may include solid decomposition material from SF6 gas by-products and other solids.

 Reuse of gas: Immediate fill into GIE or introduce into the supply stream for future reuse

The Three <u>R</u>s of Responsible Gas Handling

If filtration does not remove all contaminants, send the gas to DILO for reconditioning

Accountability

- Ensure GIE is filled to nameplate value
- Verify pressure vs temperature using OEM temp chart

OPERATIN	G MECHANISI	M TYPE
SERIAL NO. PARTS LIST NO. CLOSING TRIPPING AUX LOAD MOTOR SF6 GAS SYSTEM: NORM. OPER. PRESS.	A VOLTS VOLTS VOLTS VOLTS VOLTS ALL PF 85 PS 6	EAR OF MANUE. N/A DC 4.7 AMPS AC 4.7 AMPS AC 2 AMPS AC 10 AMPS RESSURES @ 68 F IN. OPER. PRESS. 50 PSIG
LOW PRESS. ALARM LOW PRESS. UPP F WIRING DIAGRAM	53 PSIG	50 PSIG SS0D629
ABB Pow Greens		ABB

Key Tools & Resources

- What is the quality of the gas?
- Is additional filtration required?
- Do we have the proper size recovery system required?
- Do we have enough storage?
- How do we account for the gas?
- Are adapters required?

TH ANNUAL SF, GAS

Reconditioning Process

www.dilo.com

Accountability- Delivery of Reconditioned SF6

TH ANNUAL

Report#:	AIR#191017	Service#	S-2878		Date:	10/17/2019	Pallet#	1
AssetTag Number	Cylinder Serial Number	Cylinder Certification Date	Purity (vol %)	Moisture	Decomp (SO ₂ /SOF ₂)	Tare Weight	Gross Weight	SF ₆ Weight
EHR603	N-339679	07/17*	99.9%	<40 PPMv	PPMv	119.0 LBS	233.8 LBS	114.8 lbs
GTE931	419416	11/16+	99.9%	<40 PPMv	PPMv	121.8 LBS	236.3 LBS	114.5 lbs
HLY311	73251805	11/17+*	99.9%	<40 PPMv	PPMv	110.7 LBS	225.3 LBS	114.6 lbs
FKN258	SG2095B	7/14+*	99.9%	<40 PPMv	PPMv	123.0 LBS	238.3 LBS	115.3 lbs
HLY301	U36035	11/17+	99.9%	<40 PPMv	PPMv	117.4 LBS	232.7 LBS	115.3 lbs
HKV358	32	03/17+	99.9%	<40 PPMv	PPMv	118.0 LBS	233.2 LBS	115.2 lbs
GTC978	OX-4-408947	12/16+	99.9%	<40 PPMv	PPMv	114.0 LBS	228.8 LBS	114.8 lbs
FKP274	C6657014	08/16+*	99.9%	<40 PPMv	PPMv	121.0 LBS	235.9 LBS	114.9 lbs
HAW447	179273	08/17+	99.9%	<40 PPMv	PPMv	127.0 LBS	242.2 LBS	115.2 lbs
DJT090	N-278340	07/14+	99.9%	<40 PPMv	PPMv	118.0 LBS	232.9 LBS	114.9 lbs
JCU279	X-379544	07/18+	99.9%	<40 PPMv	PPMv	113.6 LBS	228.9 LBS	115.3 lbs

Delivery of reconditioned SF₆ gas with the following criteria

Each cylinder must be weighed, analyzed and documented

Cylinders must be tagged with S/N, tare weight, gross weight & gas condition

Conclusion

Re-use of SF₆ contributes to reduction of greenhouse gas emissions and reduces the need for manufacturing of virgin gas. In turn thus reducing Greenhouse gas emissions globally.

SF6 Inventory Management

Danielle White & Robert Cardenas

RSMs

DILO Company, Inc.

Learning Outcomes

- Understand how to account for SF6 Inventory
- Recognize labeling and marking of SF6 containers
- List steps for recovery and filling of SF6 that allow user to account for SF6 by weight
- Perform accounting of gas inventory and cylinder management

SF6 is accounted for in weight

- Cylinder and Scale
 - Gross weight tare weight = SF6 volume (lbs./kgs.)
 - Cylinder Should be weighed without cap
 - Safety scale (low profile, secured with chain)
- Mass Flow Meter
 - Fewer steps
 - Less handling required

7TH ANNUAL SF₆ GAS

MANAGEMENT SEMIN

- It is best that SF6 weights are consistently tracked and documented when moving gas (filling, recovery, return to supplier, etc.).
- Internal log improves SF6 accountability and can help track emissions.
- Log SF6 weight when:

- Filling GIE/GIS
- Recovering GIE/GIS
- Consolidating Cylinders
- Shipping SF6 to supplier

Logging SF6

7 TH ANNUAL SF₆ GAS MANAGEMENT SEMINAR ²⁰²²

Cylinder Markings

ISO Cylinder Markings

Approval Number

Logging SF6

Starting Weight

SN	Certification Date	Tare Weight	Gross Weight	Net Weight
D555555	10/2022 +*	115 Lbs.	115 Lbs.	O Lbs.

Ending Weight

SN	Certification Date	Tare Weight	Gross Weight	Net Weight
D555555	10/2022 +*	115 Lbs.	230 Lbs.	115 Lbs.

Cylinder Reports

- Allow organizations to track SF6 movement from:
 - Inventory
 - Suppliers
 - Between storage vessels
- Incoming Cylinder Report
 - Log of cylinders received by warehouse
- Outgoing Cylinder Report
 - Log of cylinders leaving warehouse

Incoming/Outgoing Cylinder Report

Order Totals Report

Customer:	State Elect	ric Co.		INCOMING/OUTGOING	INCOMING		R C
Report#	S-5555	Servic	e#	S-5555	Date:	10/11/2022	SERVICE LINE
Pallet #	Total SF6 Weight	Cylinder (Count			Comments	
1	115.0 lbs	1	Cyls		Cyl	inder Receieved for Recy	/cling
2	0.0 lbs	0	Cyls				
3	0.0 lbs	0	Cyls				
4	0.0 lbs	0	Cyls				
5	0.0 lbs	0	Cyls				
6	0.0 lbs	0	Cyls				
7	0.0 lbs	0	Cyls				
8	0.0 lbs	0	Cyls				
9	0.0 lbs	0	Cyls				
10	0.0 lbs	0	Cyls				
11	0.0 lbs	0	Cyls				
12	0.0 lbs	0	Cyls				
13	0.0 lbs	0	Cyls				
14	0.0 lbs	0	Cyls				
15	0.0 lbs	0	Cyls				
16	0.0 lbs	0	Cyls				
17	0.0 lbs	0	Cyls				
18	0.0 lbs	0	Cyls				
19	0.0 lbs	0	Cyls				
20	0.0 lbs	0	Cyls				
SF6 Total:	115	1					
				_		CIGRE	Maximum Impurity Levels:
Analyzer Model:	3-038						
Analyzer Serial No:	390					Moisture:	<200 PPMv (breakers/switches)
Analyzer Cal Date:	Jun-20						<750 PPMv (gas bus)
Scale Model:	D-230-R002					Decomp:	<12 PPMv SO2/SOF2
Scale Serial No & Cal:	1301435	Mar-20				Purity:	>97% volume percentage
DILO Technician:	TP	10/11/2022		1			

Incoming/Outgoing Cylinder Report

Cylinder Report

Customer	State E	lectric Co.	INC	OMING					
Report#:	S-5555	Service#	S-5555		Date:	10/11/2022	Pallet#	1	SERVICE LINE
AssetTag Number	Cylinder Serial Number	Cylinder Certification Date	Purity (vol %)	Moisture	Decomp (SO ₂ /SOF ₂)	Tare Weight	Gross Weight	SF ₆ Weight	Comments
K5555	D-555555	Oct-22	95.0%	<300 PPMv	PPMv	115.0 LBS	230.0 LBS	115.0 lbs	Full cylinder / low purity
Cylinder	1			1	1		Total SF6	115 0 lbe	
Count	This report certifie	l os as found/as left.com	dition of the	SE6 in the seri	alized SE6 G	as cylinder	Treight.	CIGRE Maxim	um Impurity Levels:
	This report certifie	a as found/as felt cor		or o in the sen		as cynnaer.		Moisture: <20	0 PPMv (breakers/switches)
	DILO Technician:	TP						<750 PPMv (g	as bus)
								Decomp: <12	PPMv SO2/SOF2
								Purity: >97%	volume percentage

Direct Track

Labeling Cylinders

- Reduce the risk of cross contamination
- Improve shop efficiency and workflow
- Reduce risk of contaminating GIE/GIS

Full	New/High purity	Contaminated
Partial	Tag for consolidation/Use for fill / top off	Return for disposal
Empty	Suitable for Re-Use	Return for Recert./Disposal

- Color Code Example:
 - Red
 - Less than 97% SF6
 - Contaminated with arc-bryproducts do not use
 - Blue
 - Full cylinder virgin or reconditioned SF6
 - Green
 - Partially filled clean SF6
 - Consolidate or use for top-off
 - White
 - Empty in vacuum

- 1. Note cylinder SN and TW
- 2. Weigh cylinder before starting
- 3. Weigh cylinder after recovery is complete
- 4. Difference in weight is net gas recovered/filled
- 5. Repeat each step for every new gas compartment/GIE

TH ANNUAL SF₆ GAS

MANAGEMENT SE

Recovery/Filling with Mass Flow Meter

- 1. Note cylinder SN and TW
- 2. Zero out mass flow meter before starting
- 3. Complete recovery/filling
- 4. Recover remaining gas in hoses
- 5. Write down weight in gas as displayed on screen
- Repeat each step for every new gas compartment/GIE

THANK YOU!